ISSN: 0334-3839

© All rights reserved to the Israel Prehistoric Society

Graphic Design: Sapir Haad

Printed by Print Unit, University of Haifa

English cover: An anthropomorphic stone image from a Neolithic cult site in the Negev (site 263/10/9)

Hebrew cover: A decorated bowl from Tel Tsaf
Table of Contents

Editors’ forward 4

Renewed Excavations at Beisamoun: Investigating the 7th Millennium cal. BC of the Southern Levant 5

A Survey of Neolithic Cult Sites in the Eilat Mountains, Israel 101
Uzi Avner, Moti Shem-Tov, Lior Enmar, Gideon Ragolski, Rachamim Shem-Tov and Omry Barzilai

Hanaton: Interim Report on a Neolithic-Chalcolithic Settlement in the Lower Galilee 117
Assaf Nativ, Ron Shimelmitz, Nuha Agha, Inbar Ktalav, Danny Rosenberg

Back to Tel Tsaf: A Preliminary Report on the 2013 Season of the Renewed Project 148
Danny Rosenberg, Florian Klmscha, Philip J. Graham, Austin (Chad) Hill, Lior Weissbrod, Inbar Ktalav, Serena Love, Sonia Pinsky, Emily Hubbard and Elisabetta Boaretto

Fazael 1, A Chalcolithic Site in the Jordan Valley: Report of the 2013-2014 Excavation Seasons 180
Shay Bar, Guy Bar-Oz, Haggai Cohen-Klonymus and Sonia Pinsky

The Chalcolithic Settlement of Khirbet Dalhamiya: The 2007 Excavations 202
Walid Atrash, Jacob Vardi, Nuha Agha and Ianir Milevski

Fifty Years Later: A Critical Review of the Stratigraphy, Chronology and Context of the Nahal Mishmar Hoard 226
Isaac Gilead and Milena Gošić

The Bone Tools from the Cave of the Treasure in Nahal Mishmar 240
Guy Bar-Oz and Reuven Yeshurun

Book reviews

Eliot Braun

Ianir Milevski

Note for authors 256

Hebrew abstracts 4*
A Survey of Neolithic Cult Sites in the Eilat Mountains, Israel

Uzi Avner1, Moti Shem-Tov2, Lior Enmar3, Gideon Ragolski4, Rachamim Shem-Tov5 and Omry Barzilai6

1 The Arava-Dead Sea Science Center and the Arava Institute, Neve Zohar, Israel. uzi@adssc.org
2 Shahaf 22, Eilat, 88104, Israel. stmoti@yahoo.com
3 Moshav Shoeva, 90845, Israel. lior.enmar1@gmail.com
4 Moshav Paran, 86835, Israel. gidon@arava.co.il
5 The Arava-Dead Sea Science Center, Neve Zohar, Israel. rastov@gmail.com
6 Israel Antiquities Authority, Jerusalem, Israel. omry@israntique.org.il

ABSTRACT
A large number of archaeological sites have been recorded during a survey in the Eilat Mountain region, mainly around Nahal Roded. The sites’ location on the igneous mountains is unique, very different from the known settlement pattern of sites of the southern Negev. The newly discovered sites consist of small, low stone installations – circular, oval and elongated, as well as a repeated pattern of a pair with an elongated cell pointing to a circle. They also contain an array of distinctive objects that imply their function as cult sites: ‘regular’ standing stones (masseboth), perforated standing stones, anthropomorphic stone images and other features. Surface collection of flint artifacts include bidirectional blade cores and tools, flakes and ad-hoc tools, suggesting that the sites mainly date to the Pre-Pottery Neolithic B period. Although the majority of these sites is currently recorded in the Eilat mountains, they were also found in other regions of the Negev and in southern Jordan, and therefore they represent a broad phenomenon. The many cult sites stand in contrast to the small number of Neolithic habitations known in the Negev and they offer a new insight into the spiritual culture of the desert Neolithic societies.

KEYWORDS: Nahal Roded, Eilat Mountains, Cult, Pre-Pottery Neolithic B, Late Neolithic

INTRODUCTION
Until recently, only a few prehistoric sites were known in the Eilat Region, most of them documented in the ‘Uvda Valley. Although earlier Acheulian and Mousterian flint implements are occasionally found on the surface, it is the Pre-Pottery Neolithic B period (henceforth PPNB) which marks the beginning of a continuous sequence of human settlement in the region (Avner 1998, 2002, 2006). The PPNB of the ‘Uvda Valley is characterized by habitation sites with curvilinear architecture such as ‘Ein Qetura (Avner and Naor 1978), Nahal ‘Issaron (Gopher et al. 1994; Goring-Morris and Gopher 1983) and Nahal Re‘uel (Ronen et al. 2001), or ephemeral camp sites with no architecture such as Nahal Shaharut 1 and 2 (Avner 1979, 1982a, b; Barzilai 2010:108). These two types of sites were suggested to reflect a hunter-gatherer seasonal settlement pattern in the central Negev (e.g. Simmons 1981; Goring-Morris 1993), a model which can be applied to the ‘Uvda Valley PPNB sites, or alternatively, being satellite hunting camps deriving from permanent Trans-Jordanian settlements (Goring-Morris 1993:70–71; Barzilai 2010: 144–149). While utilitarian activities of the PPNB in the southern Negev is generally comprehended, very little is known as to their cultic and ritual world. The lack of information on the desert spiritual domain stands in contrast to ample evidence from the PPNB in the Mediterranean fertile zone (e.g. Kuijt and Goring-Morris 2002).
The first installation of the type presented in this paper was discovered during the emergency archaeological survey of the ‘Uvda Valley (Avner 1979, 1982a, b). The site (69b, Fig. 1) contained the remains of a low oval cell and an in situ trio of vertically set perforated standing stones (Fig. 1); at the time, its date was uncertain. Occasional discoveries of similar installations in the Eilat Mountains during the 1990s, led to a systematic survey around Nahal Roded, located a short distance from the city of Eilat, initiated in 2004 on a core area of 12 sq. km (Fig. 2). Later, the survey was extended to other regions of the southern Negev. The present paper presents the preliminary results of the Neolithic sites documented in the Nahal Roded survey. We reserve here the term "cult sites" to installations located in an unusual geographical setting and containing an assembly of unique artifacts such as standing stones (masseboth), perforated standing stones, anthropomorphic stone images and others.

THE SURVEY AREA AND METHODOLOGY

The Eilat Region is hyper-arid, characterized by Saharo-Arabian vegetation which is totally limited to the wadi bed. The present annual average precipitation is 20 mm while annual potential evaporation reaches 4,000 mm. The core area of the survey (Fig. 2) is rugged, mainly of igneous mountains around Nahal Roded (Fig. 3), up to 400 m above the wadi bed. No water source is known today in this area, except for one small spring (‘Ein Netafim), two km west of the western margin of the surveyed area.

The survey faced several obstacles. Detecting these sites was difficult due to their low nature and small dimensions, while aerial photographs are not helpful. In this steep topography (Fig. 3), surveying even a limited area is strenuous and time consuming. We are certain that not all sites were discerned. Nevertheless, 102 sites were identified and recorded in the survey area, with a maximum density of 44 sites in an area of only 0.8
Figure 2. Map of the core survey area. Numbered sites correspond to those in Table 1. Due to the map scale, some sites overlap.
sq km (Fig. 2). Taking in consideration the topography, environmental conditions and the small number of known Neolithic habitations in the general southern Negev, the density of cult sites in this region is phenomenal. Mapping of the sites was made by means of GPS and GIS. They are numbered according to the Israel Archaeological Survey method (number of Map / number of the sq km / number of site within the sq km). Documentation of the sites included text description, sampling of surface flint items (up to five m radius around the sites), photography and measurement. Stone-by-stone plans (Fig. 4) were prepared for only 40 sites. Database was organized in Access and Excel tables with 37 different characteristics, enabling a variety of quantitative analyses. Stone objects were first documented as found, some were moved later for further photography and laid back in place. From sites which were recently damaged or too accessible to hikers, special stone objects were removed and stored.

SITE LOCATION, CONDITION AND LAYOUT
The sites are situated on the mountain ridges, below summits, on topographic “shoulders” or other relatively flat areas (Fig. 2). Compared to habitation sites in the region that are found on alluvial terraces, the location of these sites is unique. In contrast to the density of cult sites, only two small habitations and one small campsite were found on the ridges. One habitation site has the base of a single hut (3 m in diameter, Fig. 5), the other consists of three cells (ca. 2×2 m each) and the campsite is ca. 15 sq m. The proximity of these sites and the flint and stone objects found in them clearly relate them to the cult sites (Fig. 2 and see the lithic description below).

The vast majority, 95 sites, were found on the igneous ridges, two on sandstone and five on limestone terrain (Fig. 2), but many additional sites were found in other limestone areas of the southern Negev. Interestingly enough, all sites on the igneous terrain contain limestone

Figure 3. Nahal Roded, a view from east, with igneous ridges on both sides and a limestone ridge on the west.
Figure 4. Plan of site 263/10/3. Lime stones are dotted, others are igneous.
Figure 5. Nahal Roded, a single-room habitation (Site 263/10/9) found in proximity to a cluster of cult sites (see Fig. 1).

Figure 6. Har Assa (Site 263/07/1), a pair of installations, the elongated cell points to the circle. The pavement of the elongated cell was partially covered by a few cm of arkose and dust.
specimens, some weighing tens of kilograms, carried from a distance of 1–3 km away. Narrow trails leading to many of the sites are still visible today.

Most sites were found disturbed to varying degrees and some may have been vandalized in antiquity. Standing stones and other stone objects were often tumbled; some were broken or even discarded off the sites. Only rarely were the stone objects found in situ.

The cult sites contain one or several installations: circles, 1.5 to 2.5 m across (72 circles in 58 sites), ovals with similar dimensions (36 in 30 sites) and 28 pairs of installations of repeated pattern, in 26 sites. The pairs consist of an elongated cell, ca. 4×1 m, pointing to a circle, ca. 1.5 m. in diameter (Fig. 6). The elongated cells are built of either vertically set small flagstones or other field-stones imbedded in the ground. In some elongated cells a pavement is visible, either of flat stones (Fig. 6) or of small flat limestones (Fig. 7). The circular cells of the pairs are built of regular field-stones, commonly on a somewhat lower ground compared to the elongated one. Stone objects (see below) are usually found in and near the elongated cell, some also in and near the circles. Currently, no dominant orientation of the installations has been identified; their direction seems to relate to the local topography.

SITE CONTENTS
Several types of stone objects are found in and around the installations, but not all types are found in all sites:

1. Regular standing stones (n=126)
These are unshaped stone slabs, 10 to 80 cm tall, mostly of limestone, set vertically into the ground. They were usually set individually (75 stone slabs in 31 sites), but were also found as pairs (eight in seven sites), triads (three in three sites) one group of five and three groups of seven (in three sites). They are termed here “regular” for two reasons. One is that they are very common in desert cult installations (Avner 1984, 1993, 2000, 2001, 2002 chapter 4), second is that they are distinguished from the perforated standing stones which are unique to these sites. Some of the standing stones were found in situ, vertically set or tilted, many were fallen or even broken (Fig. 8).

2. Small perforated standing stones (n=72)
These are stone slabs, up to 15x30 cm, mostly of limestone, with a bi-conical perforation below the top (Figs. 1, 9). The perforation was made first by chiseling and then smoothed, otherwise, the stones were unshaped. Seventy two such stones were found in 41 sites. They were rarely found in situ, usually fallen, sometimes broken, scattered or even discarded up to 30 m away from the sites.
3. Naturally holed stones (n=126)
Limestone objects with natural holes, created by chemical weathering, are quite common on limestone surfaces and usually ignored. However, 126 of these were found in 32 sites built on igneous terrain (Fig. 9) and dozens were found set vertically into the ground. It is clear, therefore, that they were deliberately brought to the sites from some distance, due to unknown symbolic value related to them.

4. Anthropomorphic images (n=79)
Anthropomorphic stone images, 12–46 cm high, are naturally elongated stones with a schematic human appearance; 79 images were found in 36 sites. On 26 stone images only a neck was carved by fine pecking, on 18 images the neck was made by minimal flaking, two were finely pecked all over the surface and 33 were unshaped, selected for their natural human silhouette (Fig. 10). All but two were found tumbled; some were also broken in two. They were found lying within the installations or beside them, while some were discarded up to 30 m off the sites. Two stone images were found in situ in the circle of a regular pair. One was set upright, the other was buried, with only the very top visible on the surface (outside the core survey area stone images were found in situ in nine sites, in seven of them they were set in pairs).

5. Stones with elongated perforation (n=20)
These are ca. 20×25 cm limestone slabs with a smoothed, elongated or pear-shaped perforation (Fig. 11). Four complete ones were found in four sites, two halves and 14 fragments in 11 sites. One of the halves bears an engraving that resembles a snake (Fig. 11, right).

6. Stone Bowls (n=22)
Twenty two complete and broken stone bowls were found in 15 sites. They vary in workmanship, from totally natural bowls created by chemical weathering, to carefully shaped ones (Fig. 12). Most bowls are made of limestone, 15–45 cm across; a few (fragmented) are of sandstone.

It is of interest to note that some of the stone objects were found buried, so that only their very top was discernible on the surface. These included three regular standing stones in three different sites, one perforated standing stone and one anthropomorphic image. In addition, two perforated

Figure 8. Site 266/19/2, two broken limestone masseboth (the fragments were found scattered and were re-arranged for photography).
Figure 9. Site 263/10/9, a collection of perforated standing stones and naturally holed stones (found scattered around the installations).

Figure 10. Examples of anthropomorphic images, of various levels of workmanship, from left to right: Sites 263/21/14; 263/10/16; 263/10/9. All objects were set for photography. No. 3 was found in two fragments, ca. 1 m apart.
standing stones were found set with the perforation down and one anthropomorphic stone was incorporated in a vase-shaped installation with the head down. Since buried stones are barely discernible, this phenomenon may be more common in these cult sites.

THE FLINT ASSEMBLAGES
Flint items in various quantities (from a few to dozens) were found in most of the cult sites, in the two small habitation sites and in the small campsite. Samples were collected from each site and a small number of indicative items were analyzed (Table 1, 66 flint items, from 12 cult sites and the two small habitation sites). All are heavily patinated but relatively sharp. Of great interest is the dominance of bidirectional blade technology common to the PPNB period (Barzilai 2010; Kuijt and Goring-Morris 2002). The cores are exhausted, consisting of bidirectional blade (N=4) and bladelet (N=3) cores (Fig. 13: 1–3). In addition to the four analyzed cores, a cache of four bidirectional cores was found under a collapsed stone in the small habitation Site 263/10/22, (left untouched, Fig. 14). Notably, caching of bidirectional blades (Barzilai and Goring-Morris 2007) and bidirectional cores (Goring-Morris pers. com.) were noted in the PPNB contexts at Nahal ‘Issaron (in ‘Uvda Valley, 40 km to the north). While bidirectional blade cores are widespread in most PPNB assemblages throughout the southern Levant, bladelet cores are more frequent in the Epipaleolithic and Chalcolithic periods (Goring-Morris 1987; Rosen 1997). Still, bladelet core technology is known in the PPNB of the greater Petra area (e.g. Fabiano et al. 2004; Hofman-Jensen 2004; Rollefson 2002). Accordingly, their presence in the sites together with bidirectional blade cores suggests
Figure 13. Flint items from the surveyed sites: 1–2) bidirectional blade cores; 3) bladelet core; 4) primary blade; 5–6) bidirectional blades.
Most of the tools (N=14) were made on bidirectional blades. These consist of partially or completely retouched pieces (Fig. 15: 2-4) and a “denticulated blade” (Fig. 15: 5). Such a tool type was reported from Middle PPNB Beidha (Mortenson 1970: fig. 39:d–g) and are common in the late PPNB assemblages of Ayn Abu Nukheylah and Nahal Issaron (Barzilai 2010: 126; Gopher et al. 1994: fig. 2: 1–3; Henry et al. 2003: fig. 12:d; Kirkbride 1978: fig. 4: 21–25). Another diagnostic PPNB tool found in the survey is a relatively large pointed blade resembling an ‘Amuq point (Fig. 15: 1). This particular item, with broken ends, is similar to some of the large projectiles found in a cache (L-22) at ‘Ayn Abu Nukheylah (Barzilai 2010:134).

“Lunette-shaped” scrapers made on large flakes (Fig. 15:6–7) resemble Chalcolithic/Early Bronze Age tabular scrapers (e.g. Rosen 1997:71–75); however, such items were also recovered at PPNB Beidha and Basta (Gebel et al. 2004: fig. 12:d; Mortensen 1970: fig. 34a).

In addition to the diagnostic artifacts, ad-hoc artifacts (Fig. 16), common to the 6th to 3rd millennia BC (Rosen 2010), were noted in 35 sites. However, the total absence of pottery sherds in all sites suggests that they did not continue into the 5th millennium BC. In sum, it seems that

<table>
<thead>
<tr>
<th># Site</th>
<th>Israel grid</th>
<th>Primary elements</th>
<th>Flakes</th>
<th>Blades</th>
<th>Ridge blades</th>
<th>Core trimming elements</th>
<th>Tools</th>
<th>Cores</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>263/10/14</td>
<td>191570 390620</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>263/10/22</td>
<td>191091 390273</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>266/19/3</td>
<td>191370 389860</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>263/10/15</td>
<td>191521 390378</td>
<td>7</td>
<td>2</td>
<td>1</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>266/19/2</td>
<td>191360 389890</td>
<td></td>
<td>1</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>263/21/4</td>
<td>192030 391860</td>
<td>1</td>
<td>1</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>263/00/2</td>
<td>190920 390240</td>
<td>2</td>
<td>2</td>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>260/62/2</td>
<td>196530 402410</td>
<td>2</td>
<td>5</td>
<td>1</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>263/10/9</td>
<td>191485 390202</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>263/10/8</td>
<td>191143 390075</td>
<td>1</td>
<td>3</td>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>263/11/18</td>
<td>191971 391043</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>263/23/1</td>
<td>192556 393402</td>
<td>1</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>263/10/3</td>
<td>191397 390745</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>2</td>
<td>8</td>
<td>29</td>
<td>1</td>
<td>17</td>
<td>7</td>
<td>66</td>
<td></td>
</tr>
</tbody>
</table>

Table 1. Selected flint items from the surveyed sites. See the site locations on the map of Fig. 2. Sites 260/62/2 and 263/23/1 are out of this map. Sites 263/10/9 and 263/10/22 are habitation sites, all others are cult sites.

Figure 14. A cache of four bidirectional blade cores under a wall at Site 263/10/8.
Figure 15. Flint tools from the surveyed sites: 1) 'Amuq point; 2–4) retouched blades; 5) denticulated blade; 6–7) “lunette-shaped” scrapers.
the sites were built and used during the 7th and 6th millennia BC. Determining the time span with higher precision will require excavations and series of radiometric dates.

DISCUSSION

The nature of surveyed sites (low, symbolic construction) and their contents (stone objects and features, buried or set vertically; etc.) support their cultic interpretation. Their unusual location indicates that they were built on the mountains solely for the cult purpose. Their position on topographic ‘shoulders’ or comparatively flat locations probably enabled several dozens of people to gather around them, for example, an extended family. Commonly, a broad view is seen from the sites, so possibly, the scenery was one element in the selection of their location. The trails, mostly leading specifically to the sites, are probably a part of the entire complex of the Nahal Roded cult sites. The fact that they are still visible today, thousands of years after being used, indicates that they were frequently visited, for short events, during a significant period of time and by many people. Since many sites contain several installations (up to eleven) and numerous stone objects, support the view that at least some sites were not just temporary.

While a comprehensive stylistic study of the stone objects is still ongoing, a preliminary interpretation suggests two symbolic aspects. One is fertility, represented by the stones with elongated perforation (vulva-shape) and by the very combination of the elongated cell and the circle (c.f. Avner and Avner 1999). The second is death, signified by the burial of stone objects and by setting them upside-down. Combinations of both are actually well-known in anthropological studies as relating to ancestral cult (e.g. Barley 1997; Hardacre 2005; Mack 1986; Matclif and Huntington 1991; Radin 1991). A broader interpretative study for these aspects is now under preparation.

The number of cult sites recorded to date suggests that many more still await discovery, even in areas previously surveyed. The discovery of tens of these sites around Be’er Ora, east of ‘Uvda Valley, around Nahal Paran, in the Negev Highland and even in the Faynan area, Jordan, show that these sites are not ‘endemic’ to the Eilat Mountains. Rather, many more may be found on the mountains of the Negev, southern Jordan and Sinai. Although such sites are not reported as yet from other surveys in these regions, one may think now of a vast phenomenon, of hundreds of mountain cult sites in the desert.

Currently, the cult sites greatly outnumber the known habitation sites and they actually open new horizons to the study of the Neolithic cultures. Until recently, we believed that an “eruption” of cult sites in the desert, with hundreds of masseboth sites, open-air sanctuaries and others, occurred during the 6th millennium BC (Avner 1984, 1993, 2000, 2001, 2002: chapters 4, 5, 9). A possible explanation connected these many cult sites to the shift of the desert societies from hunting and gathering to farming and herding around 6,000 BC, about a millennium later than in the fertile zones (Avner 1998, 2002: chapter 2, 153; Rosen 2005). Now it seems that the cult “eruption” preceded the economic-cultural change. Therefore, a different explanation should be sought.

Figure 16. Ad-hoc flint artifacts from Site 266/19/3.
POSTSCRIPT
After submission of this paper, two 14C dates were received from L. Scott Commings, the PaleoResearch Institute, Golden Colorado. The dates (Table 2) were measured on tiny charcoal fragments, up to 0.5 mm in length. They were retrieved from a hearth located 2 m from a stone installation of site 263/10/29, only 2 cm below surface. The charcoal fragments were too small for species identification. The approximate mean calibrated dates (judging by the dominant peak of the calibration curve) are 9,120 and 8,900 BP, indicating that the cult sites addressed here appeared by the late 8th millennium BC, the Late PPNB. We thank L. Scott Commings and her staff for analyzing the samples.

<table>
<thead>
<tr>
<th>Lab #</th>
<th>Sample Identification</th>
<th>AMS 14C Date</th>
<th>1-sigma Calibrated BP Date (68.2%)</th>
<th>2-sigma Calibrated BP Date (95.4%)</th>
<th>δ^{13}C %</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRI-11-061-3</td>
<td>Charcoal</td>
<td>7,950 ± 250</td>
<td>9,200BP (68.2%)</td>
<td>8,500BP (95.4%)</td>
<td>Na</td>
</tr>
<tr>
<td>PRI-11-061-301 (313)</td>
<td>Charcoal</td>
<td>8,146 ± 29</td>
<td>9,170BP (9.3%) BP9,155</td>
<td>7,145BP (8.9%) 7,070BP</td>
<td>-22.8</td>
</tr>
</tbody>
</table>

Table 2. Radiocarbon dates for Nahal Roded site 263/10/7. Dates are calibrated using OxCal 3.1 (Bronk Ramsey, C. 2005. OxCal 3.1, www.rlaha.ox.ac.uk/oxcal/oxcal.htm). Approximate mean dates are based on the dominant peak in the calibration curve.

ACKNOWLEDGMENTS
We are grateful to the Irene Levi-Sala CARE Archaeological Foundation for supporting this survey and to many colleagues who visited the sites with us and offered their comments and thoughts. Many of the sites were found by Moti Shem-Tov, others by Lior Enmar, Gideon Ragolski and Uzi Avner. GIS mapping was made by Rachamim Shem-Tov, photography and stone by stone plans were made by Uzi Avner, the flint drawing made by Michael Smelansky and the flint analysis by Omry Barzilai.

REFERENCES